HURTEAU EARTH SYSTEMS ECOLOGY LAB
  • Home
  • Blog
  • The Team
  • Publications
  • Outreach
  • Research Briefs
  • Teakettle Experiment
  • Research Projects
  • Lab Manifesto
  • Student Positions
  • Model Parameters
  • Photos
  • Contact

3/26/2018

Fire Season 2018 - Opinion

0 Comments

Read Now
 
Humans have extended the fire season and are responsible for 84% of all wildfires that occurred from 1992-2012 by providing unnatural ignition sources. The Albuquerque Journal recently published an article - Hotter, Faster Burns Expected - which stated, this is likely to be a significant fire season in the southwest.  While absolutely true, what the article missed is that humans are entirely responsible for the predicament we face this year. While drought and dense forests create conditions that allow large, hot wildfires to burn, there is no wildfire without a source of ignition.  Unattended campfires, cigarettes tossed out the window, and downed powerlines are the causes of many wildfires.  There are no natural ignition sources until the lightning strikes that accompany monsoon season begin in the southwest.  We have the ability to prevent this from being a significant fire season by eliminating human-caused ignitions. 

Beyond this year, the wildfire problem is considerably larger than one dry winter.  Regular fires burning on the forest floor historically maintained more open conditions and large, hot, fast-moving wildfires were rare.  The large, tree-killing wildfires that occur now like the Cerro Grande, Las Conchas, and many others, are completely of our own making.  By suppressing fires for a century, we have created dense forests that are loaded with fuel.  In addition to the fuel we’ve added to the forest, we’re also cranking up the temperature by continuing to burn fossil fuels. 

There is a strong link between temperature and area burned by wildfire.  As temperature has increased, the length of the fire season in the southwest has increased by 110 days since the 1970s.  When snow melts earlier in the season, forests dry out and are more flammable.  In the southwest, the area burned by wildfire is 1200% larger than it was in the 1970s.  The link between flammability and temperature is how wet the fuels (logs, branches, etc) in the forest are.  Higher temperatures dry out forest fuels faster.  Since 1984, human-caused warming has accounted for a doubling in the forest area burned in the western US. The drying and increasingly large wildfires are creating treeless landscapes that are dominated by shrubs.  With on-going drought, higher temperatures, and larger, tree-killing wildfires large portions of our landscape may not grow forests again.   

We need to learn to live with fire in the southwest.  We need to eliminate the carelessness that provides the ignition source for wildfire.  We also need to accept that fire is an important part of our forests and be tolerant when managers use fire to restore our forests.  We have to accept that managed fires will sometimes cause smoke where we live.  We have to accept that when there is a managed fire, we won’t be able to access the area for recreation for a short period of time. We have to accept that if we live in a flammable environment it is our personal responsibility to make our homes fire safe.  If we learn to live with fire, forest managers will have the latitude to restore this important ecological process and help slow how quickly we lose our forests to climate change.

Share

0 Comments

3/12/2018

On being a scientist

0 Comments

Read Now
 
Imagine a career where a high success rate means you fail more than 50% of the time and you can never prove you are correct.  That is being a scientist. 

I live in a world where the majority of my friends are also scientists and I often forget that most people have relatively limited formal exposure to science.  Sure, you take biology and chemistry in high school and if you’re not a science major in college, you take a few science classes.  What gets lost in this level of education is how messy the scientific process is and how often you fail to accomplish your objective.  What also gets lost is how the excitement of unexpected results is really what drives most of us.  We teach science as a linear process in introductory science classes – researcher develops hypothesis, designs experiment to test hypothesis, experiment supports hypothesis, new knowledge acquired and added to text book.  But, that isn’t how it really works.

A more accurate representation of this bland description is that – researcher develops hypothesis, designs experiment to test hypothesis, experiment fails for any number of reasons, researcher develops new experiment to test hypothesis, experiment inconclusive, new knowledge acquired, researcher reevaluates hypothesis and starts over.  Of course, that doesn’t do the process justice.  In my experience as a forest ecologist it usually goes something like this:
  1. Working out in the field with colleagues, one of us notices something happening.
  2. As we work collecting data, we talk about that something.  We tear it apart.  We put it back together.  We try and fit it within the construct of how we think things work. 
  3. The idea starts to take shape and we develop a research question or four.
  4. We develop hypotheses for these questions.
  5. We wait for an opportunity to submit a grant proposal and the funding opportunities usually have a success rate lower than 10%.  We may have to submit a proposal several times before it is funded and in some cases it may never be funded.
  6. One day, the program officer calls and tells us congratulations, your proposal has been selected for funding.
  7. After a celebration and congratulatory high-fives, it sinks in that now we have to face the logistic challenges of putting in the experiment in the field. 
  8. My rule of thumb is that 50% of what we plan in the office won’t work in the field.  But, we figure it out because we’re a persistent bunch.  Persistence is something you learn along the way when you fail the majority of the time. 
  9. Fast forward several years and numerous challenges and we’ve finally got data we can begin to analyze. 
  10. We analyze the data to test our hypotheses.  We find support for some and no support for others. 
  11. The really exciting part is trying to figure out why the results ended up as they did.  Circling back to step 2, we question the construct of how we thought things worked.  Science is most exciting when your results cause you to fundamentally change the way you think a system works. 
  12. Now, we start the whole process over again because while we answered some questions, we ended up with a whole bunch more.

​If you’re not a scientist (which I hope) and reading this (the whole reason I write this blog), you’re probably thinking – This poor science geek can only make friends with other scientists. and It must be pretty demoralizing to fail most of the time.  I certainly can’t speak for everyone in science, but I’m pretty obsessive when it comes to thinking about forests and most of my friends are pretty obsessive about thinking about their study systems too.  It’s not a curse; nature is a fascinatingly complex puzzle.  I absolutely love forests and I strive to do meaningful work that helps us understand and better manage our forests.  As for the failure part, sure sometimes it’s disheartening.  But the unexpected is what motivates me.  When I get unexpected results and it challenges me to think about the forest in a new way, that is what wakes me up in the middle of the night.  That is what allows me to let the grant proposal and paper rejections roll off my back.  When I teach introductory ecology, I try and communicate to students that this process is not linear like their textbook would have them believe.  The information that makes it into a book has lots of failure and reevaluation behind it.  The individuals that discovered those things in their textbook were driven by curiosity and the desire to more completely understand whatever system they were working in.  While this career certainly doesn’t appeal to most, I just hope that people who aren’t scientists can appreciate the process the way I appreciate the process an artist or business person or engineer goes through.  

Share

0 Comments
Details
    Follow @MatthewHurteau

    Archives

    October 2023
    July 2023
    June 2023
    April 2023
    January 2023
    August 2022
    July 2022
    June 2022
    January 2022
    July 2021
    January 2021
    November 2020
    June 2020
    April 2020
    October 2019
    May 2019
    February 2019
    December 2018
    November 2018
    October 2018
    August 2018
    July 2018
    April 2018
    March 2018
    November 2017
    October 2017
    September 2017
    August 2017
    May 2017
    March 2017
    February 2017
    January 2017
    November 2016
    October 2016
    July 2016
    April 2016
    January 2016
    November 2015
    October 2015
    August 2015
    July 2015
    May 2015
    April 2015
    February 2015
    December 2014
    October 2014
    September 2014

    Categories

    All
    Communicating Science
    Fire
    In The Field
    Lab News
    Lab Publications
    Las Conchas Fire
    Planting Experiment
    Research

    RSS Feed

  • Home
  • Blog
  • The Team
  • Publications
  • Outreach
  • Research Briefs
  • Teakettle Experiment
  • Research Projects
  • Lab Manifesto
  • Student Positions
  • Model Parameters
  • Photos
  • Contact