Over the past century, fire suppression has been the primary management tool in many fire-prone forests worldwide, and has increased tree density and forest fuels, resulting in an increased risk of stand-replacing wildfire (Veblen and Lorenz 1988; Covington et al. 1994; Fulé et al. 2004; Ohlson et al. 2006; Wang et al. 2007). A number of factors, including fire suppression, have probably contributed to increased carbon (C) storage in US forests during recent decades (Hurtt et al. 2002). Carbon in fire-suppressed forests is now more vulnerable to catastrophic release than is C in forests of pre-settlement condition (Breshears and Allen 2002).

In forests of the western US, fire frequency and severity historically ranged from high-frequency, low-severity fires in ponderosa pine and Sierran mixed-conifer forests (Covington and Moore 1994; McKelvey et al. 1996) to low-frequency, high-severity fires in forests at higher elevations, such as spruce–fir and northern latitude coastal forests (Agee 1993; Schoennagel et al. 2004). The frequency with which large and severe wildfires have occurred has increased in recent decades, a pattern attributed to both land-use changes (Covington et al. 1994; McKelvey et al. 1996) and climatic shifts (Westerling et al. 2006). Wildfires release massive amounts of CO₂ to the atmosphere (van der Werf et al. 2006; Wiedinmyer and Neff 2007). Models indicate that even if current fire suppression success is maintained, the US carbon sink is predicted to decline through the 21st century, because harvesting removes carbon and mortality occurs at rates equal to sequestration resulting from tree regeneration (Hurtt et al. 2002). Increased frequency and intensity of wildfires will further contribute to this decline.

Currently, forest managers are implementing fuel-reduction treatments in fire-prone forests historically characterized by high-frequency, low-severity fire regimes. In the Sierra Nevada Mountains of California and the southwestern US, these treatments typically involve removing small-diameter trees that have established since the advent of fire suppression policy (Covington et al. 1997; North et al. 2005). Figure 1 depicts the C storage consequences of two potential forest management strategies for dry western forests that have historically experienced high-frequency, low-severity fire events. While the unthinned option stores more C in the absence of fire, it is more likely to experience a stand-replacing fire that results in a large C release, both during the event and post-fire (Auclair and Carter 1993; Kashian et al. 2006). Moreover, depending on the forest type, the area burned by a stand-replacing fire does not recover its pre-fire C stock for decades (Schulze et al. 2000; Wirth et al. 2002). The thinned scenario effectively increases the “rotation length”, placing forest car-
Carbon protection and fire risk reduction

MD Hurteau et al.

bon in a longer residence-time pool (the remaining trees continue to grow for a longer time period; Schulze et al. 2000). Additionally, as evidenced by wildfire simulations in Sierran mixed-conifer forest, thinning not only reduces the risk of a catastrophic C release, but also results in C being concentrated in fewer, larger trees that approximate the old-growth structure of pre-fire suppression forests (Hurteau and North 2009).

Carbon registry groups require that forest managers determine a baseline above which additional C stored counts as a carbon credit. This one-size-fits-all methodology is fundamentally flawed, because it does not fully account for the effect of variation in stand structure and forest biomass on the risk of stand-replacing fire and albedo (ie the ratio of outgoing to incoming radiation). Under the regulations of the Kyoto Protocol and groups such as the California Climate Action Registry, forest thinning is considered a carbon source to the atmosphere, because the amount of C stored on a given unit of land area is reduced, at least temporarily (Penman et al. 2003; California Climate Action Registry 2007), even though thinning reduces the risk of substantially greater C losses during stand-replacing wildfire. If, by contrast, that same forest is not thinned and instead experiences a catastrophic fire, the C stock baseline is simply reduced, as if no CO₂ emissions had occurred during the fire. This accounting is justified by the argument that management actions have little influence on the risk of fire, especially in forests that were historically typified by high-severity, stand-replacing fire. Even though CO₂ emissions do occur, they are considered to be uncontrollable and, thus, no land owner or manager’s carbon account is debited. In many of the drier forest types of the western US, fires historically burned with high frequency and low severity (Covington et al. 1994). For example, southwestern ponderosa pine forests had a historic fire return interval that ranged from 2 to 12 years, and the mean fire return interval for Sierran mixed-conifer forests was 12 to 17 years (McKelvey et al. 1996). In these systems, fire maintained both the overstory structure and system processes (McKelvey et al. 1996). Here, the current C accounting methodology is faulty, because it penalizes actions that reduce avoidable carbon release to the atmosphere and that have been shown to restore ecosystem function in forests historically maintained by fire (Carey 2005; Zausen et al. 2005). Failure to recognize the threat of catastrophic C release amounts to a perverse incentive to increase fire risk through continued fire suppression.

An example from the 2002 fire season

During the 2002 fire season in the western US, four major fires – the Rodeo–Chediski, Hayman, Biscuit, and McNally – burned some 508 000 hectares of forest land, 92 000 hectares of which experienced high-severity, stand-replacing fire (Subirge and Lovely 2003; USDA Forest Service 2003; Azuma et al. 2004; Odiôn and Hanson 2006). To estimate pre-fire C storage for unmanaged forest, we used field data presented in Kuenzi (2006) for the 189 000-ha Rodeo–Chediski fire that occurred in Arizona in 2002. For the other three fires, we used stand characteristics from a dry, western forest comprised of two Abies species, two Pinus species, and Pseudotsuga menziesii, modeled by Agee and Skinner (2005). To calculate indi-
vidual tree C storage, we utilized allometric models developed by Kaye et al. (2005) for *Pinus ponderosa*, which allowed us to use the modeled tree diameters from each fire event to calculate C storage by tree component. Using models derived from pine results in a more conservative estimate of C stocks compared to the fir and Douglas-fir allometric equations in the California Carbon Action Registry Forest Sector Protocol (2007). The per hectare C values were then multiplied by the number of hectares that experienced high-severity fire at each site.

To estimate hypothetical pre-fire C storage for the forests that had been thinned, we used stand characteristics from Agee and Skinner’s (2005) “low-thin” treatment. This treatment is a thin-from-below harvest that most closely matches a forest restoration and wildfire risk reduction prescription; it involves removing a majority of the small-diameter trees (which accounted for 18% of the total biomass) and retaining all of the larger diameter trees.

To estimate post-fire C storage for thinned forest, we utilized model outputs from Agee and Skinner (2005), which had an 8% tree mortality rate. To estimate post-fire C storage for unthinned forest, we utilized the Kaye et al. (2005) allometric models, coupled with two published combustion factors for emissions per unit of aboveground biomass, to bracket a range of possible emissions. Specifically, we used the average combustion factors for high-severity areas in the Biscuit fire (which accounted for 18% of the total biomass) and aboveground biomass, to bracket a range of possible emissions. Specifically, we used the average combustion factors for high-severity areas in the Biscuit fire (which burned greater than 200,000 ha in southern Oregon and northern California in 2002; Campbell et al. in press) and the 30% combustion efficiency used by Wiedinmyer et al. (2006) for woody fuels. Our calculated emissions values are quite conservative, since we account only for emissions from live trees. As noted by Campbell et al. (in press), 57% of the Biscuit fire emissions were the result of combustion of the litter and duff layers. Our analysis did not account for the energy costs of thinning and transporting biomass and their associated CO₂ emissions.

Of the approximately 92,000 ha that experienced high-severity, stand-replacing fire in these four wildfires, approximately 4.2–6.1 million metric tons of CO₂ equivalent (MMTCO₂e) were released from live tree biomass (Figure 2). Thinning these same forests before they burned would have removed 3.9 MMTCO₂e and reduced live tree fire emissions to only 0.07–0.3 MMTCO₂e.

Both strategies – forest thinning and fire suppression – cost money. In the case of thinning to reduce fuels, small-diameter trees are typically non-merchantable and require that the manager pay for their removal. The Healthy Forest Restoration Act (2003), the legislation driving much of the recent fuel-reduction effort, allows for project funding through operations revenue. This approach could diminish forest C storage by requiring the removal and sale of large trees to offset the cost of removing the smaller ones.

Fire suppression and the inevitable wildfires that follow are also expensive. The direct suppression costs for fighting the four fires we assessed were approximately $277 million (Graham 2003; Snider et al. 2003; The Wilderness Society 2003; Azuma et al. 2004). This figure includes only expenditures for personnel and equipment actually employed in fighting the fires, and does not include other costs, such as property loss, land rehabilitation, and reforestation. A conservative estimate of these other costs for the Rodeo-Chediski fire is $250 million (Snider et al. 2003). This puts the cost of that fire at $1586 ha⁻¹. If we assume similar direct and indirect costs for the other fires, the high-severity areas of these four fire events cost approximately $145.8 million. An analysis of forest thinning costs for nine national forests in the western US found that treatments can range from $344–1097 ha⁻¹ (Fight and Barbour 2006).

For the four fires considered here, this would have totaled $100.9 million (using $1097 ha⁻¹) and would have resulted in 16.5 million metric tons of CO₂e sequestered on the site in live tree biomass, had these areas been thinned prior to the fire event. This sequestered CO₂ has a current market value of $8.5 million (based on $1.90 per ton of carbon; Chicago Climate Exchange, November 30, 2007). The revenue generated from the sale of offsets could potentially be used by forest managers to pay for wildfire risk reduction operations (see Figure 3 for costs by event). Allowing carbon credits for protecting forest carbon would provide revenue that could be used in lieu of operations revenue, thereby reducing reliance on larger diameter trees to pay for fuel reduction operations under the Healthy Forest Restoration Act.
Conclusions

Our “back-of-the-envelope” calculations indicate that massive CO₂ emissions from wildfire are avoidable in forests that have historically been characterized by frequent, low-severity fire (Figure 2). Forests thinned to approach pre-settlement tree density and stand structure harbor substantially more C after wildfire than adjacent dense stands that have not been thinned (Wirth et al. 2002; Figures 4 and 5). Moreover, the biomass removed by thinning is available for wood products or energy generation, the latter replacing fossil-fuel emissions (Pacala et al. 2001). Thinning forests for C protection also achieves many of the ecological goals of forest restoration (Covington 2000). One of the ancillary benefits of thinning these forests is a reduction in resource competition that increases the growth of the remaining trees (Sheriff 1996). This increase in growth rates could potentially offset part of the predicted decline in the US carbon sink, while concurrently storing carbon in fewer, larger trees per hectare, thereby reducing the risk of loss to catastrophic fire.

Under the Kyoto Protocol (for unmanaged lands) and the California Climate Action Registry carbon accounting policies, emissions of CO₂e from stand-replacing fires are ignored, and the C stock baseline is simply recalculated based on the new carbon stock level (Penman et al. 2003; California Climate Action Registry 2007). In our analysis, the carbon protection leverage of forest thinning is strong. Assuming a 30% combustion efficiency, removing 3.9 MMTCO₂e of the original forest C by thinning prevents the direct loss of 5.7 MMTCO₂e of the carbon by catastrophic wildfire, if the same wildfire burns over the thinned area after treatment. Thus, even if all of the thinned forest biomass is burned, there is still a net benefit of protecting 1.8 MMTCO₂e (5.7 MMTCO₂e–3.9 MMTCO₂e) from release during wildfire. If the thinned forest biomass is used for wood products or energy generation, the benefits are correspondingly greater.

Stand-replacing fires are a natural part of the disturbance regime for some forest types, and resetting the carbon baseline after fire may be appropriate in these situations. However, our analysis calls into question the application of current carbon accounting practices in systems historically characterized by a low-severity and high-frequency fire regime. Carbon accounting guidelines should allow us to maintain the disturbance regimes that shaped the diverse forest types in the western US, particularly in cases where the natural disturbance regimes also favor long-term carbon storage.

Figure 3. Total estimated cost of each fire event plus the cost of offsetting the CO₂ release (red) and total cost of thinning the same land area minus the market value of the offsets gained from protecting the carbon stock (blue).

Figure 4. Post-fire forest conditions following the Rodeo–Chediski fire. (a) Photo taken approximately one year after the fire in an area that had been thinned (to a basal area of about 15 m² ha⁻¹) and pile burned in 1997. (b) Photo taken immediately post-fire, in an area that was not thinned prior to the fire.
Carbon accounting guidelines may also need to be revised to consider more broadly the feedbacks from forest management and disturbance to the climate system (e.g., the influence of forest treatments on albedo). In addition to promoting C storage, forest thinning probably contributes a net cooling effect by increasing surface reflectance: removing small trees reduces leaf area index (McDowell et al. 2007), exposing the grass, soil, or snow below (depending on season and latitude), each of which has a higher albedo than coniferous trees (Liu et al. 2005). On a regional scale, increased albedo could cause net cooling (Liu et al. 2005; Randerson et al. 2006; Figure 6), creating another possible benefit of fuel-reduction treatments. Evaluating this hypothesis will require measuring changes in albedo with fuel-reduction treatments, as well as regional scaling of the consequences for climate. It seems likely that, in some situations, fuel-reduction treatments would offer climate benefits, both by increasing C storage and by increasing surface reflectance.

Current carbon accounting practices for forest systems that are characterized by frequent, low-severity fire ignore the influence of management actions on fire risk. Instead of being punished for reducing C stocks, forest managers who take action to reduce the risk of catastrophic wildfire in systems that historically experienced frequent, low-severity fire could be rewarded with carbon credits. Allowing credits for wildfire risk reduction would provide another means of generating revenue to cover the cost of thinning forests, especially in regions such as the Southwest, where a majority of the wood biomass that needs to be removed is not currently merchantable.

Acknowledgements

The authors thank V Leshyk from the Bilby Research Center at Northern Arizona University for illustrations. This research was supported by the US Department of Energy’s Office of Science (BER) through the Western Regional Center of the National Institute for Climatic Change Research at Northern Arizona University.

References

Figure 5. Stand conditions following the 2002 Cone fire at the Blacks Mountain Experimental Forest. The white line approximates the border between the treated and untreated areas prior to the wildfire. The area in the upper left was left untreated and the remaining area was thinned and prescribe-burned prior to the Cone fire.

Figure 6. Albedo of forest land under (a) thinned and (b) unmanaged conditions. Thinning increases albedo by revealing more of the “brighter” grass, soil surface, or snow.

